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NOMENCLATURE 

area ; 
absorption factor, fraction of radiation leaving the 
node i and being absorbed by the node j; 
specific heat [W s/kgdegK] ; 
thermal conductance m/degK] ; 
“skin” scale factor s/s* ; 
“inner” scale factor L/L? ; 
temperature ratio T/T* ; 
thermal contact coefficient p/degK m’] ; 
length ; 
power dissipated in a node [w] ; 
absorbed heat flux [W/m’] ; 
absorbed heat [W] ; 
ratio of absorbed heat fluxes q/q* ; 
radiation factor between the node i and the node j 

~A,srBr, ; 
skin thickness ; 
time ; 
temperature [degK] ; 
volume ; 
directions tangential to the skin ; 
direction normal to the skin. 

Subscripts 

a, area (conduction across an interface); 
1, of node i ; 
19 ofnodej; 
0, from node i to node j; 
is, from node j to space ; 
m, material (conduction within a material); 
n, normal (to the skin) ; 
4 tangential (to the skin). 

Superscripts 
* , small model ; 

skin. 

INTEODUCTION 

WITH the development of more powerful launching vehicles 
the satellites or spacecraft become larger and larger. Up to 
now it has been necessary to let the test facilities grow in 
the same proportion. The laws of thermal similitude were 
established in the hope that it would be possible to verify 
or determine the thermal model? of a spacecraft atIer having 
carried out a test only on a small scale model3 of this space- 
craft, because that would permit the use of smaller test 

chambers. 

Greek symbols 
u, absorptivity for sun- or lamp-radiation; 

s, emissivity ; 
4 conductivity [W/degK m] ; 
P. density [kg/m31 ; 
0, constant of Stefan-Bolzmann ; 
99 incident heat flux [W/m’]. 

But treating thermal scale modeling of spacecraft from 

t The term “thermal model” means the thermal mathe- 
matical model, i.e. the table containing the factors in the 
heat balance equation [equation(l.l)]. 

$ The term “scale model” means a smaller physical 
version of a spacecraft. 
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the standpoint of thermal similitude, it was found ditllcult 
in the case of temperature-preservation to find the proper 
materials with lower conductivities in the small model than 
in the prototype? [l, 23. In the case of materials-preserva- 
tion it was a limitation that the temperatures, lamp in- 
tensities and thermal contact coefficients had to be increased 
considerably [3,4, 51. 

The experimental difficulties have hitherto hindered the 
wide use of thermal model scaling for spacecratl testing 
[3, 51. In order to reduce these difllculties we propose not 
only to use the same surface properties on the small model 
as on the prototype on homologous points as other authors 
have done, but to preserve also the materials and thermal 
contact coefficients and to replace the laws of thermal 
similitude by others The lamp intensities and the time scales 
are chosen in such a way that the same temperature levels 
are reached in both the scale model and the prototype. The 
fact that the temperature gradients in the small model and 
prototype are different is taken into account in the calcu- 
lation. 

1. SCALING FACTORS AND HEAT BALANCE 

Figure l(a) shows the sketch of a spacecraft and Fig l(b) 
the sketch of the scale model. We designate with s, the skin 
thickness and with L, a length of the interior of the satellite; 
x and y am the directions tangential to the skin and z is the 
direction normal to the skin An asterisk characterizes the 
values in the small model. A part of the satellite, as for 
instance the skin, which can be made of a metal sheet or a 
honeycomb structure, might be already relatively thin It 
could then be required to use in the z direction a smaller 
scale factor than in the x and y directions or in other words 
to apply anisotropic scaling for an element of the skin We 
introduce therefore / = s/s* as the scale factor of the skin 
and F = L/L+ as the scale factor of the whole spacecraft 
except the skin. 

FIG. 1. 

(b) 

7 The term “prototype” invariably refers to the latter. 

If the masses are considered to be lumped together into 
isothermal nodes, the heat balance for the node j of Fig l(a) 
for instance becomes : 

+ (Pcv)j & . 0 (1.1) 
I 

The heat Q, absorbed on the outside of the node j is 
calculated for the case where the spacecraft is tested in a 
chamber simulating cold and sun and, where the reflection 
and emission of the chamber walls are neglected, by 

QI = 4rpf+ (1.2) 

v, is the average intensity of the lamps, which falls on the 
area A and a is the absorptivity for the spectrum of the 
lamps. 

The conductance C, between the two nodes i and j is 
composed by conduction within the solid material (index m), 

which depends on the conductivity I of the material and by 
conduction through the interface of two solids, which 
depends on the thermal contact coefficient h [index a (area)]. 
We can therefore write for a conductance within the spaoe- 
craft (no index), a conductance tangential to the skin 
(index t) and for a conductance normal to the skin (index n) 
[see Fig. l(a)] : 

G -hA - - hC (1.3b) 

C 
0. r N h,At - h,yz 5 h&s (1.3d) 

C 
a.” - hA - h.xy - h-l?. (1.3fl 

The radiation factor R,, between the two nodes i and j is 
calculated by 

Ri, = c&&r (1.4a) 

Because we require that the emissivities E are conserved and 
identical at equivalent geometric locations, the absorption 
factors B,, are also preserved Therefore we can write 

R,j _ L? . (1.4b) 

The last term of equation (1.1) expresses the heat stored 
in the node j. The volume I’ of this term is 

v _ c, (1.5a) 

if we consider an element of the interior of the satellite. If 
the considered element is cut out of the skin its volume v’ is 

V’ u SC. (1.5b) 
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The absorbed heat Q, the heat radiated away to the 
space RISTT, the radiative heat exchange on the inside 
R,,(Tf - T;) and the power P, dissipated in a no&j are 
entirely scaled with the factor F and not f, because power 
is unlikely to be dissipated in a skin element. The remaining 
two terms of equation (l.l), the conduction C,,(T - TJ and 
the storage @cY),(dT/dt), are according to the equations 
(1.3) and (1.5) scaled as well with F as with f. 

2. THE LAWS OF THERMAL SIMILUTUDE 

Introducing g as the temperature ratio T/T* and con- 
sidering the equations (1.2-1.5), we obtain from equation 
(1.1) for the ratio of the heat fluxes r in the prototype and 
the small model : 

rpa P k hg Afs htfg k~ 
r=..=p*F*=jq=G====h*F= 

rpa , I 1” f 

b 4 _ pcFgt* _ (pc)'f gt* =-_=g - 
h: (Pc)'*t o*t (2.1) 

Equation (2.1) contains all the laws of thermal similitude, 
which requite that all the terms absorption, dissipation, 
conduction, radiation and storage are changed with the 
same ratio r. The scaling laws for special cases such as 
temperature-preservation or materials-preservation can 
easily be derived from equation (2.1). Let us consider 
briefly these two cases. 

Temperature-preservation 
In this case 9 is unity. From equation (2.1) we see, that r 

should also be unity. We find further that for instance the 
conductivity 1’ = I/F and the time t* = t@c)*/pcF = 
t(pc)‘*/(pc~,f have to be reduced with the scale factor. 

Materials-preservation 
In this case we have 1 = 1* and equation (2.1) gives 

r = g/F = g4, which gives for the temperature ratio 9 = 
T/T* = (l/F)* and for the ratio of the heat fluxes I = 
‘pa/rp*a* = (l/F)? Further we obtain h* = h/g3 = hF. So 
the temperatures T*, the lamp intensities (p* and the thermal 
contact coefftcients h* have to be increased considerably. 
The time t* = tpc*/(pc)F’ has to be reduced with the 
second power of the scale factor. 

3. THE LAWS FOR SCALING 
WITHOUT SIMILITUDE 

From equation (1.4b) we obtain for the radiation factors 
between the nodes and to the space 

R.. = R?.FZ u u (3.la) 

R,, = R$F’. (3.lb) 

By equation (1.5a) the heat capacity of the inside of the 

prototype is determined by 

(Pc~‘)~ = (pcV)fF’ (3.2.a) 

and the heat capacity of a skin-node by equation (1.5b) as 

(pcl’); = (pcV)~F2f. (3.2b) 

The conductance C, between the two nodes i and j is 
calculated by 

GIG 
Cij = -. 

Gl + co 
The conductance C, due to solid conduction in the material 
is composed of conduction within the node i and of con- 
duction within the node j. From the equations (1.3) we 
obtain : 

G = FC: (3.4a) 

C, = F2C* 

c m.1 = ic:t 

(3.4b) 

(34c) 

C 0.1 = Ff C:,, (3.4d) 

C F2 c* 
In,” = - WI.” 

f 
(3.4e) 

c 0,” = F*C* 0, ” (3.40 

Introducing the equations (3.4) into equation (3.3) it follows : 

F’C*C* 
cij = 

Ct imF& 
(3.5a) 

c,, = FfCX:t 
8,. f 

C:, t + FC: t 
F*C* c* 

Cij,” = ill*” lhn 
CL + fc.. 

(3.5b) 

(3.5c) 

The conductances within the satellite Cij, tangential to the 
skin C,,,, and normal to the skin Cij.. of the prototype can 
thus be calculated. when not only are the total conductances 
in the small model determined by a test, but also the contri- 
butions of conduction within the material (Cd and across 
the joints (C:) are known. If the temperatures are measured 
only at the centres of the nodes i and j only the total conduct- 
ance Cij of the scale model can be determined. In this case 
one of the conductances C: or C,* in the equations (3.5) 
would have to be calculated theoretically. lf the temperature 
drop across the interface is small in comparison to the 
temperature drop between the centres of the nodes, we 
would have Cz g Cz and equation (3Sa) would give 
Cij z FCZ. If the thermal resistance across the joint domi- 
nates, we have Cz + Cz and equation (3.5a) gives Cij x 
F’C:. Similar laws can be derived from the equations, 
(3.5b) and (3.5~). 

The interface heat transfer depends on the surface 
roughness and waviness the pressure, the materials of the 
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two surfaces and any interstitial fluid As much as possible 
has to be done for the case in which the interface thermal 
resistance is not negligible to ensure that these parameters 
are identical in the small model and the prototype. But this 
difficulty exists also to a still larger extent in the case of 
scaling with thermal similitude, where either the materials 
are not the same or the thermal contact coefficients have to 
be increased artificially. 

It might be remembered that the view factors are difficult 
to determine for irregular geometries. Even if they are 
calculated exactly by numerical integration using a com- 
puter and converted into the radiation factors R, R, 

these factors would not be the same as those obtained by a 
test. This is due to the fact that the number of nodes is 
always too low. 

Practically we determine at first the thermal model of the 
scale model [i.e. the factors C, R, R, and @cl’), in 
equation (1.111 as if this model would be the real spacecraft 
[6]. Then we calculate with the equations (3.1-3.5) the 
thermal model of the prototype. In order to have in the scale 
model and in the prototype the same temperature levels, the 
lamp intensities cp can be at the same order of magnitude, 
but the absorbed heats Q and dissipated heats P have to be 
reduced with F2. 

4. EXAMPLES OF CALCULATION 

Let us consider models with only two nodes j and i as in 
Fig 2 The node j can be considered as a circular plate and 
the node i as a segment of a spherical shell. But the con- 
ductances are calculated by supposing that we have a two- 
dimensional problem and that the Figs. 2 are a cut through 
infinite long cylinders, from which we consider in the case of 

model 1, a length of 1 m and in the case of model 2, a length 
of 0.1 m. 

Table 1 contains the thermal models for five cases We 
have models of three different geometries (model 1,2 and 3) 
and two different materials (steel and aluminium) Between 
the models 1 and 2 the scale factors are F = 10 and f = 5. 
Between the models 1 and 3 we. have F = 10 and f = 10. 
Here only a conductance tangential to the skin exists. All 
surfaces are considered to be perfectly black. 

Table 2 contains for the case of one solar constant 
falling normally on the node j the equilibrium temperatures 
and the heat exchange by conduction and radiation between 
the nodes j and i as obtained by equation (1.1). In the cases 
3 and 4 Tj and T are identical, because the laws of the 
temperature-preservation technique are fulfilled between 
the model 3 (made of steel) and the model 1 (made of 
aluminium). In these two cases (3 and 4) the ratio of the 
conductive heat transfer to the radiative heat transfer is 
also the same. Otherwise this ratio increases if the model 

0005m 

0.005 m 

IS -w D: 2m2 

/ 
I m2 

i 

model I 

Table 1 

(a) 

FIG. 2. 

(b) 

m2 

Case No. Model Material 
[k] [A] [W/deiKm] [W/zzgK] [W/dekm’] w/:lgK] pi:gK] 

1 1 steel 1 0.005 21 O-07 500 25 0.068 
2 2 steel 0.1 0001 21 0.014 500 0.05 091093 
3 3 steel @l oQOO5 21 o+Xl7 500 0.025 0.00546 
4 1 aluminium 

A-1 
0.005 210 0.7 500 2.5 0546 

5 2 aluminium 00-B 210 0.14 500 0.05 0.0369 

Case No. R,, = R,s 
P/de&l p/f&K*] [kzm”] [k&/k; degK] [m ] I!? @cV), @cF), 

CJ/degKl [J/degKl 
1 5.69 lo-* 11.38 10-s 7900 @12 0.005 19900 39800 
2 0.0569 0.1138 7900 0.12 O+XKlOl 39.8 
3 

79.6 
0.0569 0.1138 7900 0.2 oooooo5 19.9 

4 
39.8 

5.69 11.38 2700 0225 oGO5 12700 25400 
5 0.0569 0.1138 2700 0225 00XJOl 25.4 50.8 
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Table 2 

Case. No. q [“K] ‘J [“K] Conduction [W] Radiation [W] A,cppj [W’J 

1 348.6 265.3 5.66 556 1400 
2 345.3 268.9 0.835 5.099 14 
3 347.0 267.1 0,436 5.338 14 
4 347.0 267,l 43.6 533.8 1400 
5 338.7 275.5 2.33 4.2 14 

Table 3 

Case No. 1 Case No. 4 
r rs1 

TI [“Kl T WI TIlTI ‘I WI 

120 340.7 265.2 335.0 266.8 
240 333.5 264.8 324.7 266.1 
360 327.0 264.4 315.9 265.0 
480 321.2 263.8 308.1 263.7 
600 315.8 263.0 301.3 262.3 

Case No. 2 Case No. 3 Case No. 5 
r [sl 

7; C”Kl T WI Tjc”Kl TC”KI Tj l?Kl Tic”K1 

60 327.1 268.2 314.7 264.7 312.6 273.6 
120 312.8 266.5 293.4 260.1 294.7 2696 
180 301.3 264.2 277.9 254.7 281.5 264.8 
240 291.7 261.7 266.0 249.2 271.1 259.8 
300 283.5 268.9 256.2 243.2 262.7 254.8 

size. decreases and the materials are conserved. The examples 
show also that the temperature gradients are reduced in the 
small models, because the heat transfer by conduction 
becomes more important with respect to the radiative 
heat transfer. So the effect of temperature-gradient reduction 
is more important in the case where the material is aluminium 
(cases 4 and 5) than in the case where the material is steel 
(cases 1 and 2). 

heat balance equation for the large models (cases 1 and 4), 
if a test would have been made only for the small models 
(cases 2, 3 and 5). For the general case of a much more 
complicated spacecraft all the equations (3.1-3.5) will be 
needed, but the general procedure is the same. 

CONCLUSION 

Table 3 gives the temperatures as a function of time, when 
the models are cooled down from their equilibrium tempera- 
tures in a perfectly black space as calculated by a computer. 
As we expect, the small models cool down more quickly. 

The thermal models in Table 1 had been calculated for 
each of the five cases considered independently, But because 
the relations (3.1X (3.2b), (34c), (3.4d) and (3.5b) are fulfilled 
between the cases in which the materials are conserved, 

Equations are given to convert the factors in the heat 
balance equation determined by a test for a small scale 
model into the corresponding factors of the real spacecraft. 
Because this conversion ratio is not constant for the different 
terms (conduction, radiation and storage) a coincident 
family of temperature curves can not be obtained and more 
theoretical work is required. However not much more work 
is required, because a detailed thermal analysis is needed 

these relations could be used to calculate the factors in the also in the case where the laws of similitude are fulfilled or 
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if the test is made on the large prototype. On the other hand 2. 
the test would he much simpler, because one would not be 
obliged to think about the questions of how to find the 
right materials or how to increase the lamp intensities or 3. 
the thermal contact coefficients. 

1. 

4. 
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NOMENCLATURE 

acceleration of an electron or molecule between 
2 collisions ; 
specific heat ; 
specific heat at constant pressure; 
specific heat at constant volume ; 
velocity of momentum propagation; 
velocity of heat propagation; 
energy of a molecule or electron ; 
distribution function; 
equilibrium distribution function; 
thermal conductivity; 
Boltzmann’s constant; 
mass of an electron or molecule ; 
number of free electrons or molecules ; 
per unit volume ; 
pressure ; 
heat flux vector; 
temperature ; 
time ; 
velocity in x direction; 
velocity vector ; 
velocity in z direction; 

x. y. I. coordinate axes. 

* Assistant Professor, Department of Mechanical Engi- 
neering, Massachusetts Institute ofTechnology, Cambridge, 
Massachusetts. 

Greek symbols 
a. thermal diffusivity ; 

4. as defined by equation (12) ; 

Y. CdC” ; 
p. viscosity ; 
P. density ; 
T. shear stress ; 
‘I,. relaxation time. 

1. INTRODUCTION 

AT THE present time the analytical treatment of diffusional 
type of transfer processes is restricted to the domain of the 
validity of the phenomenological relation given in the form 

Ji = L, Xj (1) 

where Ji represents fluxes and X, the thermodynamic forces. 
Strictly speaking. equation (1) should be applied only to 

low rate steady-state transfer processes. and all L,, are 
defined in this manner. However, in practice the validity of 
relation (1) is successfully extended to the unsteady pro- 
cesses without altering the values of L,,. Phyiscally. there 
must be a time scale where the validity of (1) is violated. 
Several investigators [13, 141 having this in mind, tried 
experimentally, by applying relation (1) to transient heat 
conduction to show that the heat flow is not only pro- 
portional to the temperature gradient. but also rate 
dependent. 

The results of these experiments are not conclusive: the 
authors in [14] had indicated the possibility of a significant 


